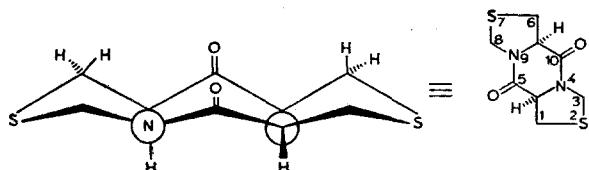


DIKETOPIPERAZINES FROM OPTICALLY ACTIVE
THIAZOLIDINE-4-CARBOXYLIC ACIDS

Z. Györgydeák, Z. Dinya, and R. Bognár

UDC 547.789.6'861.3'863:543.422.4

We have previously obtained optically active thiazolidine-4-carboxylic acids by condensing mercapto-amino acids with aldose peracetates [1-4]. In the present communication we shall describe a convenient method for converting these compounds into diketopiperazines.


Although many natural diketopiperazines have already been synthesized [5], the conversion of optically active thiazolidine-4-carboxylic acids (I) to diketopiperazines is unknown in the literature. Several optically inactive diketopiperazines have been obtained from DL-penicillamine in investigations of the structure of penicillin [6] from DL-2-methoxycarbonyl-5,5-dimethylthiazolidine-4-carboxylic acid in pyridine in the presence of tosyl chloride or dicyclohexylcarbodiimide [8, 9].

We have succeeded in obtaining 22 different diketopiperazines with good yields from optically pure acids of type I by cyclodehydration with mesyl chloride in pyridine. Symmetric 1H, 3H, 6H, 8H-bisthiazolo [3,4-a; 3',4'-d]pyrazine-5,-10-diones (II) (diketopiperazines) form rapidly even under mild conditions (from -5 to 0°C). The compounds obtained are high-melting and dissolve poorly in organic solvents. From the data in Table 1 it is seen that this reaction is not accompanied by epimerization, since two individual compounds of type II were obtained from each pair of C₍₂₎ epimers of thiazolidine-4-carboxylic acids (Ik and II_l, I_m and II_m, I_o and II_o). Compounds I_o and I_q are enantiomers.

Many reports have been published on the IR spectra of tricyclic diketopiperazines [10, 11]. Bláha [12-14] showed that in compounds with cis annelation the diketopiperazine ring is in the boat conformation, and an absorption band of CO-N at 1420 cm⁻¹ is characteristic of such structures. Another characteristic band of this type is observed at 1310 cm⁻¹. In fact, in the case of our tricyclic diketopiperazines of type II, the band of the stretching vibrations of the CO-N bond appears in the 1440-1390-cm⁻¹ region, which corresponds to the literature data. The frequency of this band depends on the substituents in the thiazolidine ring: In the case of 1,3,6,8-tetraalkylthiazolidines, it is reduced, and in the case of the polyacetoxyalkyl derivatives, it is increased and appears in the 1440-1420-cm⁻¹ region. The amide-I absorption band in the spectra of diketopiperazines IIa-IId is observed in the 1690-1650-cm⁻¹ region. In some cases, this band is split. The two carbonyl groups apparently become inequivalent due to the deformation of the diketopiperazine ring. It has been established that in this case, a substitution in the thiazolidine ring influences the frequency of the amide-I band, which, because of the deformation of the ring, is always higher in the 1,3,6,8-tetrasubstituted compounds than in the unsubstituted and 1,6-disubstituted diketopiperazines of type II. The hypothesis that coplanarity of amide group is diminished due to the deformation, i.e., that the frequency of the amide-I band increases, is firmly supported by the spectra of the diketopiperazines with a polyacetoxyalkyl chain, for which this band is observed at a relatively high frequency (1700-1670 cm⁻¹). The amide-I frequencies in the epimeric pairs of diketopiperazines (II_k and II_l, II_m and II_n, II_o, and II_p) differ only slightly from one another, the higher frequency being observed in the compounds which were obtained from the 2,4-cis compounds of type I.

The bands in the 1150-1130 region (of average intensity) and in the 580-550 cm⁻¹ region, which are probably caused by skeletal and deformation vibrations of the amide group, are also characteristic. A weak band is observed at 360 cm⁻¹ in all cases.

The most probable conformation of the compounds of type II is represented in the following diagram:

Research Group for Investigating Antibiotics, Hungarian Academy of Sciences, Debrecen 4010, Hungary.
Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1211-1220, September, 1979. Original article submitted July 7, 1978.

TABLE 1. Properties of Compounds Synthesized

Compound II	mp, °C (solvent for crystallization)	Found, %				Empirical formula	Calc., %				Yield, %	$[\alpha]_D$, c, t, solvent
		C	H	N	S		C	H	N	S		
a	—	—	—	12.1	26.9	$C_8H_{10}N_2O_2S_2$	—	—	12.2	27.8	92	—
b	210—214 (ethanol— water)	56.6	6.6	—	18.7	$C_{18}H_{22}N_2O_2S_2$	56.8	6.6	—	18.9	90	0.97, 24, DMSO
c	311 (DMFA)	—	—	8.1	17.5	$C_{18}H_{28}N_2O_2S_2$	—	—	7.7	17.6	94	—
d	256—257	—	—	6.9	16.7	$C_{20}H_{30}N_2O_2S_2$	—	—	7.1	16.2	61	—
e	210—213 (DMFA—water)	—	—	9.7	22.4	$C_{12}H_{18}N_2S_2O_2$	—	—	9.8	22.4	90	—
f	112—114 (ethanol— water)	52.4	8.2	8.6	20.0	$C_{14}H_{26}N_2O_2S_2$	52.8	8.2	8.8	20.1	77	—101, 0.82, 24, DMSO
g	210—213 (DMFA—water)	—	—	9.6	22.5	$C_{12}H_{18}N_2O_2S_2$	—	—	9.8	22.4	81	—
h	167—168 (ethanol)	—	—	8.1	18.6	$C_{18}H_{26}N_2O_2S_2$	—	—	8.2	18.7	90	1.00, 22, dioxane

TABLE 1 (continued)

Compound II	mp, °C (solvent for crystallization)	Found, %				Empirical formula	Calc., %				Yield, %	[α] _D , c. t. solvent
		C	H	N	S		C	H	N	S		
i	260 (ethanol)	60,1	6,6	6,9	15,3	C ₃₀ H ₃₄ N ₂ O ₂ S ₂	60,2	6,7	7,0	16,7	54	—
j	208—210 (ethanol)— water)	60,4	7,5	7,0	16,3	C ₂₀ H ₃₀ N ₂ O ₂ S ₂	60,9	7,7	7,1	16,2	30	—
k	Amorphous	50,3	5,7	—	6,7	C ₃₆ H ₅₀ N ₂ O ₁₈ S ₂	50,1	5,8	3,2	7,4	61	+24,5,
l	236 (ethyl acetate)	50,1	5,9	3,2	7,3	C ₃₈ H ₅₀ N ₂ O ₁₈ S ₂	50,1	5,8	3,2	7,4	83	0,71, 22, CHCl ₃
m	Amorphous	49,4	6,0	3,4	6,2	C ₄₂ H ₅₈ N ₂ O ₃₂ S ₂	50,0	5,8	2,8	6,4	63	+90
n	—	—	—	—	—	C ₄₂ H ₅₈ N ₂ O ₃₂ S ₂	50,0	5,8	2,8	6,4	74	—40
o	213—215 (ethanol)	49,8	5,7	2,6	6,4	C ₄₂ H ₅₈ N ₂ O ₃₂ S ₂	50,0	5,8	2,8	6,4	74	1, 23, CHCl ₃
p	Amorphous	47,2	5,1	3,8	7,7	C ₃₂ H ₄₂ N ₂ O ₁₈ S ₂	47,6	5,2	3,5	7,9	85	—20
	—	—	—	—	—	C ₃₃ H ₄₂ N ₂ O ₁₈ S ₂	47,6	5,2	3,5	7,9	57	1, 22, CHCl ₃
	—	—	—	—	—	—	—	—	—	—	+10	0,81, 21, CHCl ₃

TABLE 1 (continued)

TABLE 2. Infrared Spectra of Diketopiperazines of Type II

Compound II	Amide-I, cm ⁻¹	ν_{CO-N} , cm ⁻¹	Other characteristic frequencies, cm ⁻¹
a	1662	1408	1300, 1155, 530, 355
b	1658	1401	1302, 1148, 562, 550, 355
c	1669	1400	1310, 1128, 570, 560, 360
	1653		
d	1657	1411	1307, 1150, 560, 555, 350
e	1678	1398	1309, 1122, 531, 517, 349
	1660		
f	1669	1395	1296, 1154, 573, 563, 360
	1660		
g	1658	1396	1306, 1296, 1121, 528, 577, 366
h	1670	1396	1302, 1292, 1138, 538, 338
	1660		
i	1673	1394	1294, 1290, 1134, 578, 560, 370
j	1672	1397	1299, 1289, 1150, 572, 560, 348
k	1677	1425	
l	1681	1415	1290
m	1682	1430	
n	1688	1436	1290, 380
o	1679	1418	1294, 376
p	1684	1432	1292
q	1678	1421	1300, 375
r	1700	1435	350
s	1675	1403	1296, 1160, 548, 530, 340
t	1668	1410	1310, 1294, 1140, 558, 530, 348
u	1667	1422	1310, 1290, 1150, 530, 510, 370
v	1670	1381	1290, 1147, 540, 510, 360
w	1688	1393	1292, 1130, 520, 360

TABLE 3. Thiazolidine-4-carboxylic Acids

Compound I	mp, °C (solvent for crystallization)	Found, %		Empirical formula	Calc., %		Yield, %
		N	S		N	S	
d	Amorphous	—	12,6	C ₁₀ H ₁₆ CINO ₂ S	5,6	12,7	70
f	119—120 (diethyl ketone)	7,3	16,7	C ₈ H ₁₅ NO ₂ S	7,4	16,9	46,5
g	127 (acetone)	19,9	8,9	C ₆ H ₁₁ NO ₂ S	8,7	19,9	77
i	176—179 (ethyl acetate—ligroin)	6,2	13,5	C ₁₁ H ₂₁ NO ₂ S	6,0	13,9	96
j	117 (cyclopentanone)	6,3	14,4	C ₁₀ H ₁₇ NO ₂ S	6,4	14,8	35

EXPERIMENTAL

The IR spectra were recorded in KBr tablets on a Perkin-Elmer 283 instrument with an accuracy of ± 0.5 cm⁻¹. The rotation angles were measured on a Schmidt-Haensch polarimeter. The melting points were determined on a Boëtius micro hot-stage apparatus. The thin-layer chromatography was carried out on Kiesel Gel G, and the preparative separation was carried out in a column with Kiesel Gel 60 in a 4:1 benzene-acetone system with detection by iodine vapor.

The starting compounds used were commercial L-cysteine (from Reanal), D-cysteine (from Diamalt AG, West Germany), and D-penicillamine (from Biogal, Hungary).

The thiazolidine-4-carboxylic acids were obtained according to the following methods: Ia [15], Ib [16], Ic [17], Ie [18], Ih [19], Ik and Il [20], Im and In [4], Io and Ip [2], Iq and Ir [3], Is and It [21], Iu and Iv [22], and

Iw [23]. The synthesis of the acids that have not been described was carried out in analogy to the methods for the compounds described: Id [17], If and Ig [18], and II and Ij [17] (Table 3).

Diketopiperazines IIa-IIw

A solution of 1 mmole of compound I in 5 ml of dry pyridine is cooled to -10°C , and 0.11 ml of methanesulfonyl chloride is added with stirring. The stirring is continued at room temperature for another 2 h. The homogeneous mass is poured into 40 ml of water, and the amorphous oily precipitate formed is extracted with chloroform. The extract is washed with a KHSO_4 solution and dried with MgSO_4 . The further purification is carried out in a chromatographic column or by crystallization. The data on the diketopiperazines obtained are presented in Table 1.

LITERATURE CITED

1. R. Bognár, L. Somogyi, and Z. Györgydeák, *Ann.*, 738, 68 (1970).
2. R. Bognár, Z. Györgydeák, L. Szilágyi, and L. Somogyi, *Ann.*, No. 9, 1637 (1975).
3. R. Bognár, Z. Györgydeák, L. Szilágyi, G. Horváth, G. Czira, and L. Radics, *Ann.*, No. 3, 450 (1976).
4. R. Bognár, Z. Györgydeák, L. Szilágyi, G. Czira, and J. Támas, *Ann.*, No. 9, 1536 (1977).
5. S. Johne and D. Gröger, *Pharmazie*, 32, 1 (1977).
6. W. L. Mosby, *Heterocyclic Systems with Bridgehead N-Atoms, Part II*, Interscience, London (1961), p. 834.
7. R. Bentley, A. H. Cook, J. A. Elvidge, and G. Shaw, *J. Chem. Soc.*, No. 9, 2351 (1949).
8. B. Paul and W. Korytnyk, *J. Med. Chem.*, 19, 1003 (1976).
9. T. Kaneko, T. Shimokobe, Y. Ota, E. Toyokawa, T. Inui, and T. Shiba, *Bull. Chem. Soc., Jpn.*, 37, 242 (1964).
10. E. B. Nielsen and J. A. Schellman, *Biopolymers*, 10, 1559 (1971).
11. Yu. N. Chirgadze, *Biofizika*, No. 7, 383 (1962).
12. J. Vičar, J. Smolíková, and K. Bláha, *Coll.*, 37, 4060 (1972).
13. K. Bláha, M. Budesinsky, I. Frič, J. Smolíková, and J. Vičar, *Tetrahedron Lett.*, No. 15, 1437 (1972).
14. J. Vičar, J. Smolíková, and K. Bláha, *Coll.*, 38, 1957 (1973).
15. S. Rather and H. T. Clarke, *J. Am. Chem. Soc.*, 59, 201 (1937).
16. R. H. Wiley and J. T. Jeffries, *J. Am. Chem. Soc.*, 71, 1137 (1949).
17. S. Lieberman, P. Brazeau, and L. B. Hardon, *J. Am. Chem. Soc.*, 70, 3094 (1948).
18. G. E. Woodward and E. F. Schröder, *J. Am. Chem. Soc.*, 59, 1690 (1937).
19. H. T. Clarke, J. R. Johnson, and R. Robinson, *The Chemistry of Penicillin*, Princeton University Press, Princeton (1949), p. 464.
20. R. Bognár, Z. Györgydeák, L. Szilágyi, P. Sándor, and L. Radics, *Ann.* (1979) (in preparation).
21. G. Prota and E. Ponsiglione, *Tetrahedron*, 29, 4271 (1973).
22. J. J. Herak, M. Kovačević, and B. Gašpert, *Croat. Chem. Acta*, 49, 141 (1977).
23. A. R. Dunn, I. McMillan, and R. J. Stoodley, *Tetrahedron*, 24, 2985 (1968).